
Developing Libvirt

Michal Pr��vozn��k
mprivozn@redhat.com

https://mprivozn.fedorapeople.org/

Beijing 2016

https://mprivozn.fedorapeople.org/

Introduction

What will you learn?

I How upstream works

I How downstream works

2 / 16

Terms clari�cation

list The mailing list libvir-list@redhat.com where
patches, design decisions, general discussion take
place.

upstream Raw product from repository.

downstream Stabilized product, where only bug �xes are
backported.

BZ The Bugzilla bugzilla.redhat.com. For both
upstream and downstream bugs.

3 / 16

Upstream process

1. You spot/are assigned a bug/RFE1

2. Investigate the code, try to understand it

3. Write a patch, test it locally

4. Send the patch to the list

5. Wait for review

positive Congratulations, you're done
negative Goto 2

1Request For Enhancement

4 / 16

Upstream process (cont)

1. You spot/are assigned a bug/RFE

bug Is it really a bug? Sometimes easy to answer (e.g. a
crasher), sometimes harder (should an attribute be
formated in domain XML?).

RFE It's crucial to understand the feature. Get clear
design.

In both cases, if in doubt, it's better to ask on the list.

5 / 16

Upstream process (cont)

1. You spot/are assigned a bug/RFE

I Try to �nd in the BZ if the bug is not already reported

I If it is:
I Has somebody assigned, ask them
I Note down BZ number since it's needed later

6 / 16

Upstream process (cont)

2. Investigate the code, try to understand it

I Libvirt's source code is complex. Functions are called from
many places.

I Many (hidden) dependencies.

I There's a lot of info on Web/Wiki pages.

If in doubt, it's better to ask on the list.

7 / 16

Upstream process (cont)

3. Write a patch, test it locally

I Commit message is important
I Talk to me like to a child, explain details
I Help maintainers (blame commits, put BZ links)

I One semantical change per commit
I For instance, code refactor and bug �x should be two di�erent

commits.

I make all syntax-check check

8 / 16

Upstream process (cont)

Bad example:

commit 265ea811cbc176c007f9771ca968b4b2ec7d5afe

Author: Michal Privoznik <mprivozn@redhat.com>

AuthorDate: Tue Jan 25 18:31:00 2011 +0100

bugfix for https://bugzilla.redhat.com/show_bug.cgi?id=671050

virsh simply refutes to detach-interface in case when multiple \

interfaces are attached and --mac is not specified.

https://www.redhat.com/archives/libvir-list/2011-January/msg01011.html

9 / 16

https://www.redhat.com/archives/libvir-list/2011-January/msg01011.html

Upstream process (cont)

Good example:

commit 1268820a632846267b75432dc155779a716e289c

Author: Eric Blake <eblake@redhat.com>

AuthorDate: Thu Apr 23 08:13:53 2015 -0600

build: avoid obsolete index()

Commit 2a530a3e5 is not portable to mingw, which intentionally

avoids declaring the obsolete index(). See also:

https://bugzilla.redhat.com/show_bug.cgi?id=1214605

* src/util/virstring.c (virStringStripControlChars): Use strchr.

Signed-off-by: Eric Blake <eblake@redhat.com>

https://www.redhat.com/archives/libvir-list/2015-April/msg01161.html

10 / 16

https://www.redhat.com/archives/libvir-list/2015-April/msg01161.html

Upstream process (cont)

3. Write a patch, test it locally

I Fixing bug? Introduce test

I Implementing RFE? Introduce test

I Documentation, RNG schema

I Follow Contributor guidelines
http://libvirt.org/hacking.html

11 / 16

http://libvirt.org/hacking.html

Upstream process (cont)

4. Send the patch to the list

I Use of git send-email is strongly recommended

I Don't hand edit generated patches2.

I Make sure your patches are applicable onto current HEAD

I Don't CC random people, all developers are subscribed to the
list.

2Except writing notes at the correct place, and even with that git-notes is

preferred

12 / 16

Upstream process (cont)

5. Wait for review

I On positive review patches are merged

I On negative review, rewrite the patches as suggested
I A question in the review doesn't mean \change it".

I Resend with subject pre�x altered
git format patch -v2 ...

I If you get no review in two weeks, ping

13 / 16

Subprojects

1. Language bindings (python, perl, ruby, C#, Java, . . .)

2. Di�erent models (CIM, QPID, GObject, SNMP)

3. Others (designer)

I Use the list with correct pre�x
subproj.git $ git config format.subjectprefix subproj][PATCH

I [libvirt-python][PATCH] event-test: support ...

14 / 16

Downstream process

Upstream �rst!

1. Selected upstream patches are backported
git cherry-pick -sex $hash

2. ABI stability preserved, no API backport possible

3. Merge conicts resolving

4. Backward compatibility (not losing domains, their state, . . .)

15 / 16

The End

Questions?

16 / 16

